
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8252

Improving Detection Performance of Duplicate

Bug Reports Using Extended Centroid Features

Nhan Minh Phuc

Falculty of Information Technology, Tra Vinh University, Viet Nam

Abstract: According to recent work, detection on duplicate bug reports has received much attention. One of the reasons

is that duplicate bug reports may consume time of bug triagers and software developers. In previous studies, many

schemes have been developed for using text mining techniques or using the information retrieval and natural language

processing techniques. In this paper, we propose a method to improve centroid characteristics by adjusting centroids

with better initial values than based on Class-Feature-Centroid (CFC) [12]. With the effectiveness of CFC, the centroid-
based approach can obtain further improvements for detection performance. The method includes two steps. First, we

extract inter-class and inner-class term indices from the corpus. Second, we enhance centroid calculation based on class

features. Moreover, for similarity measure we also adapt the calculation of the traditional cosine similarity by

denormalized cosine measure which is also used in [12].

Keywords: Bug Reports, Duplication Detection, Feature Weighting, Class-Feature-Centroid

I. INTRODUCTION

Defect reporting is one of important parts of software

maintenance process. For many open source software

projects such as Bugzilla, Firefox so on, they alway have

an issue tracking system which is used to receive bug

reports which allow users to describe, track, classify,
comment and report dedects. Normally, the bug reports are

analyzed by a triager and assigned them to the appropriate

programmers who determine the order in which to work

on assigned reports based upon such information as a

report's priority for fixing bugs. With the bug tracking

systems, users can report new bugs, track statuses and

comments of bug reports on existing bug reports. This

helps to reduce time and cost for bug report triaging.

According to [8], on average processing a bug report

needs around 30 minutes for the collected data of Sony

Ericsson. However, this takes only 30 seconds using
automatic detection techniques by natural language

processing (NLP) [8]. Although bug tracking systems

have signicant benefits, they have challenges in handling

duplicate bug reports. Since the system of bug reports

process is often uncoordinated, manual inspection is

needed to detect whether these bug reports has been

reported before.

Duplication Detection Problem

Duplicate bug report problem can be understood as

following: two or more bug reports are said to be

duplicate if they describe the same bug issue or software
defect and thereby have the same solution. In the past,

many researchers have noticed the severity of the

duplicate bug report problem [1, 2, 6, 8, 10]. For example,

in 2006, reported that duplicate reports made up 36% of

all reports in the Firefox repository, 17% of Eclipse

Platform reports, 14% of Apache 2.0 reports and 13% of

Fedora Core reports [6]. These percentages correspond to

large numbers of reports: 14159 for Firefox, 9181 for the

Eclipse platform, 422 for Apache 2.0, and 4792 for Fedora

Core [6]. Moreover, the previous Eclipse dataset collected

from October 2001 to August 2005 has 18,165 bug
reports, and 20% of the reports are duplication [1]. In

addition, 30% of 2,013 reports in the Firefox dataset

collected from May 2003 to August 2005 are duplicate.

According to previous studies, the problem of duplication

detection can be characterized by identifying two or more

bug reports that describe the same software defect.

Typically, the duplicates can be further classified into two

types. Firstly, the duplicate bug reports describe the same

failure situation. Secondly, the bug reports describe the

different failures with the same source of the software

defect. However, since the second duplication type is more

complicated and may involve different vocabulary for
different bug reports then its detection usually cannot be

effective by only exploring the textual information of the

bug reports. For solving these problems, the researchers

found that specific information in program need to
consider such as executable traces. However, these relates

to private information, so among research focuses on first

type.

Figure 1.2: The duplication detection is performed to give a

recommendation list to predict the likelihood of an incoming bug report

being a duplicate of RCi.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8253

In open software repositories, bug reports contain pre-

defined fields, free-form text, attachments, and

dependencies. The pre-defined fields provide a variety of

categorical data about the bug reports. The report

identification number, creation date, and reporter are fixed

when the report is created. For some other values such as

the product, component, operating system, version,

priority, and severity after submitting to the system they

are led by the reporter and sometimes these may also be

changed over the lifetime of the report. In general, the
reports usually consist of some error messages, meta-

information, a short summary and long description.

The duplication detection problem in this research is

processed as follows. For a software project, the historical

bug reports are first classified into n report clusters (RCs).

Each RC has a master bug report (MBR). If an RC has

more than one bug report, the bug reports in the RC have

the duplicate relationships. For each incoming bug report

BRx, the duplication detection is performed to generate a

recommendation list that shows the likelihood order of

BRx being a member of RCi. The duplication relationship
is determined if one of the following conditions is

satisfied:

1. For a master report BRm, a bug report BRi has been

resolved as duplicate with a reference to BRm in the bug

tracking system, and the report status is closed.

2. For two bug reports BRi and BRj, if they are marked as

the duplicate of BRm, BRi is a duplicate of BRj, and vice

versa.

 3. If there is another bug report BRk that is marked as

duplicate of BRi, BRk is also a duplicate of BRm. This

property is called the transitivity.

Table 1.1: An example of master bug report (BR) and its
duplicates

of
Cluster

Master BR and its duplicate

1 793 689

2 797 792, 703

...

n 2610 2520, 2407, 525

Generally, when the triagers identify that a new report is a

duplicate of an old one, then the new one is marked as

duplicate. In this research, given a set of reports on the

same defect, the earliest one in the set is marked as the

master report as seen in Table 1.1. In this example, last

column of each row presents as master bug report and other
columns are its duplicates. In Figure 1.1, this bug report

#174 is identified as a duplicate in the resolution field. On

the bottom of the figure show that this bug report is a

duplicate of bug report #108. In this case, these two bug

reports are also formed a report cluster. For a software

project, the historical bug reports are classified into n report

clusters. To build the clusters, we use the comments of bug

reports to create a mapping file as seen in Table 1.1, which

describes a form of the map file which the each row

presents as one cluster. Figure 1.2 shows an example for

ArgoUML in which a recommendation list is generated for

BR # 174. The RCi containing the MBR # 108 is marked

according to the detection judgement.

The rest of the paper is organized into four sections.

Section II gives a brief overview of related work. Section

III presents the proposed scheme in which extended

centroid features are used to improve the performance of

duplicate detection. In section IV, the empirical study on

different open source projects is elaborated to demonstrate
the effectiveness of the proposed scheme. Finally, section

V concludes the paper.

II. RELATED WORD

In this chapter, we present related works of the research

problem and technique that related to our study. In [6],

Hiew developed a centroid-based incremental cluster

scheme and get successful for detection of duplicate bug

reports around 20% - 50% in recommendation list of top 7

with projects of Eclipse: 20% and Fedora: 31%. Moreover,

the paper published in 2007, Runeson, Alexandersson, and

Nyholm have proposed a software tool using natural
language processsing (NLP) techniques for software

projects of Sony Ericsson [8]. However, result of recall

rate also achieved in range 31% - 42% with top between 5

and 15 for recommendation list.

Figure 1.1: An example of a duplicate bug report in ArgoUML. In this

example BR # 174 is a duplicate of BR # 108

Another method in recent research which is evaluated high

by recall rate is better than others is extra textual

information and the execution information of Wang et al

[6]. With enhancing of software execution information, his
approach can identify from 67% to 93% recall rate of

duplicate bug reports for Firefox project. However, the

improvements for execution information can be very

complicated and require advanced instrumentation tools.

In addition, another drawback is that this method relate to

privacy concern of user behavior information from the

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8254

execution information. Sun et al. [9] in 2010 explored the

Support Vector Machines (SVM) model with selecting

more relevant textual features of bug reports and result for

exploring 54 features help their model can get around from

48% to 52% recall rate with top 5 for recommendation list.

However, this method used the IDF (inverse document

frequency) to improve the discriminative. This leads to

large computation when the number of data set increase

day by day. Moreover, the SVM model also need to retrain

when a new bug report comes, this can cause a great cost
in the detection process.

Also in the same year 2010, feature extraction method

based n-gram of Ashish Sureka and Pankaj Jalote [10]

were proposed and have improved the performance of

duplicate detection on bug reports. The method based

observation of bug report characteristics which contain

many code compound words. However, result recall rate

in their technique only achieve at 40% top-10 of

recommendation list for the Eclipse project. Main reason

is that the n-gram-based approach may cause many noisy

features. In Chen's thesis [4], he proposed the basic NLP,
N-gram, and the cluster Shrinkage (CS) technique that

improve the similarity identification using reweighting the

features of bug reports. The method can get around 89%

and 76% top 20 of recommendation list for SVN project

and ArgoUML, respectively. However, this method used

reweighting makes cost for high calculation.

III. DUPLICATION DETECTION DESIGN

This section presents the design of proposed study method

to improve duplicate bug reports. In our approach, we

definite a cluster as a duplicate bug reports set and when

have a new bug report is submitted, we call it is an

incoming bug report. Moreover, we also call first bug
reports are master bug reports as shown in Table 3.1.

Table 3.1: An example for mapping in duplication bug report

of
Cluster

Incoming bug reports and
confirmed duplication

Master bug report

1 793 689

2 797, 792 703

...

n 2610, 2520, 2407 525

We use the comments for determine bug reports which has

been marked as a duplicate. If the bug report is a duplicate

bug report, it is marked as a duplicate with a message is

added in bug report like form “this issue has been marked

as a duplicate of <bug report ID>”. This comment is often

marked by developer. According to previous studies,

although centroid-based approaches bring many

advantages [6], however, they also face much serious with

the problem of inductive bias or model misfit [10, 13].
Centroid-based approaches are more susceptible to model

misfit because of its assumption that a document should be

assigned to a particular class when the similarity of this

document and the class is the largest [12]. Therefore, they

explored that a centroid based classifier should give more

weight to term distributions among the corpus, i.e., inter-

class, inner-class and in collection distributions. Centroids

considering characteristics of term distribution have

shown improved results [7]. From previous studies

observation, we propose a model with novel weight

representation for centroid based duplicate detection

which incorporates both inter-class term distribution and

inner-class term distribution to determine term weights in

prototype vectors.

In present method, we construct a model for improving the
duplicate bug report detection rate. For experiment in

preliminary result, we get the recall rate better than others.

In particular, the proposed scheme has the following four

basic processing steps and subsection elaborates on each

of these steps.

1. Feature extraction

2. Feature weighting

3. Similarity calculation

4. Recommendation generation

Figure 3.1 shows the processing flow in our scheme.

Fig. 3.1: The detection process for duplicate bug reports.

A. Feature extraction

For presentation bug reports, we use the same model with

previous studies which is VSM (Vector Space Model).
Proposed method performs pre-processing for raw textual

data before analysing it, tokenizing the text into words and

removing stems from those words. Using the WVTool tool

to obtain tokenized which based on letters and non-letters,

all non-letter characters are assumed to be separators, thus

the resulting tokens contain only letters. Tokenization

strips punctuation, capitalization, numbers, and other non-

alphabetic constructs. Stemming function is useful to map

different grammatical forms of a word to a common term

and allows for a more precise comparison between bug

reports by creating a more normalized corpus, in our
experiments used the common Porter stemming algorithm.

We then filter each sequence against a stop list of common

words. Stop list remove words such as “a” and “and” that

are present in text but contribute little to its comparative

meaning. Moreover, to define exactly the dimensions of

the vector space, we also use word list creation function

with a list of string values in our method.

B. Feature weighting

From observation limitations for the inferior performance

of centroid-based classifiers is that centroids do not have

Vector Space

Representatio

n

Duplicat

e Predictio

n

Incoming

Bug Report

s

Recommendatio

n Lis
t 1

.
….

. 2

.
….

. 3
.

….
. 4

.
….
.

Existing

Bug Report

s

Cosin

e Similarit

y

NL

P Preprocessin

g

Cluste

r Centroi

d

 Term

weighting

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8255

good initial values [12]. In order to overcome this issue,

we employ CFC (Class-Feature-Centroid) method, in this

method a centroid is built from two important class

distributions: inter-class term index and inner-class term

index. CFC presents a novel combination of these both

and instead of using traditional cosine measure for

calculation between two vectors we use denormalized

cosine measure because its advantages for calculating the

similarity score between a text vector and a centroid [12].

Formula for calculation traditional centroid as follow:

(1)

In formula (1) the centroid is the arithmetical average of

all document vectors of class Cj. In the CFC method,

weight for term tk of class j is calculated as:

(2)

where DFj
ti is term ti' s document frequency in class Cj, |Cj|

is the number of documents in class Cj , |C| is the total

number of document classes, CFti is the number of classes

containing term t, and b is a constant larger than one. In

the above formula, the first phrase describes the inner-

class term index, and the second phrase describes the

inter-class term index.

Function of the inner-class distribution of a term can help
to distinguish text classification. For instance, if a term

appears many times in documents of category C, and then

a test document containing the term is more likely to be of

category C. The advantage of this is to limit the inner-class

feature weight within range [1,b] and b is a parameter

greater than 1. The denominator |Cj| in the formula can

smooth the difference of document frequencies across

categories. This component can be easily computed by

counting the occurrence of terms while traversing the

corpus, which only incurs linear-time cost. For the inter-

class term index, a good inter-class feature or term should

distribute rather differently among classes. In other words,
if a term only appears in a few categories, and then the

term is a discriminative feature, thus a good feature for

classification. Conversely, if a term appears in every

category, and then the term is not a good inter-class

feature. Extracting inter-class term index help to produce

more discriminative features. It is a form is similar to IDF,

but the difference is that the CFC is counting the number

of categories or classes containing the term. When a term

that occurs in all category, we get |C| = CFti) then the value

becomes 0. In the case the term only occurs in one

category, we get the value is log(|C|). In other situation,
the value is got from between them. From observation, we

show that such rare terms and bias against popular terms.

We can also be calculated the inter-class term index easy

in linear time by counting vocabularies while traversing

the corpus once.

C. Similarity ranking

From previous researches, using cosine for similarity

calculation is evaluated as one of effective methods

between two vectors as shown in Figure 3.2. In our

method, we also follow this method. However, we do not
use the same traditional similarity measure between two

vectors that replace by adopting this method with another

method called denormalized cosine measure which is

computed between a document vector and a prototype

vector as shown in Figure 3.3.

From previous study [12], the denormalized cosine

measure presents the discriminative capability of

prototype vectors and improves the accuracy of detection

in duplication bug reports. In our model, there are two

types of similarity calculations. One of them is called

document-based ranking and another type is cluster-based

ranking. In document-based ranking, we first perform
comparison of incoming bug reports with all bug reports in

bug repository, then we sort them by computing similarity

values to determine whether bug reports is duplicate or

not. Another type is the cluster-based ranking, for this type

we re-calculate the cosine values before performing to

determine duplicate bug reports. We then average these

values of members in cluster. Finally, we compare the

incoming bug reports with all bug reports for new cosine

values in bug repository and sort them by calculation

similarity value in determining duplicate bug reports.

Figure 3.3: An illustration of denormalized cosine measure

D. Top-N Recommendation

Follow-up previous methods, we present the preliminary

result by using the top N with recommendation system.

We rank for top 20 and observe the result. With the result

get from experiment we compare the top-N

recommendation list with past researches. In our approach,

with preliminary result we get the performance better than

others.

Figure 3.2: An illustration of standard cosine measure

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8256

IV. PRELIMINARY EXPERIMENTS

In this section, we present our preliminary experimental

environment with two projects of open-source datasets are
ArgoUML and SVN. Table 4.1 lists the detailed

information of these two datasets. We also make a

comparison with past research work in performance. The

result is described in the following subsections.

A. Experimental Setup

To evaluate the CFC scheme and related duplication
detection schemes, the recall rate metrics in Equation (4.1)
was used in the experiments. This represents that how
many bug reports can be correctly detected in the top-k
items of the recommendation rank list. The recall rate used
in the experiments is defined as follows:

Recall rate (4.1)
reports bug duplicate of # Total

 predictioncorrect of #
 ＝

In our model, we use parameter b to calculate weighting

feature. In our experiment, we study CFC's performance

with varying values of b. Then, we observe that parameter

b get the best performance result when b gets value e - 1.9

with (e -1 ≤ b ≤ e - 2.0) in our experiments. The results are

shown in figures 4.2 to 4.3.
B. Comparison Evaluation

To explore the effectiveness of CFC in comparison with

related detection schemes, experiments were conducted

to study the work of Hiew and the work of Runeson. The

results are shown in Figures 4.4 to 4.5.

As shown in the experimental results, the proposed CFC

scheme has significant improvements in most cases of

all two projects. Figure 4.5 shows that the CFC scheme

can improve the TF-IDF scheme in both Runeson-based
and Hiew-based methods up to 10% in the SVN dataset.

As the SVN dataset, the CFC-based scheme performed

well in the ArgoUML dataset. Figure 4.4 shows that the

CFC-based scheme can also improve the TF-IDF scheme

in both Runeson-based and Hiew-based methods up to 5%

in the ArgoUML dataset.

Table 4.1: Information of data sets of two open source
projects

Description ArgoUML SVN

Language Java C

Software Type UML Tool SCM Tool

SCM Subversion Subversion

Repository Tigris Tigris

Data period 01/02-07/05 01/03-07/05

of bug repts 4,613 2,296

#of duplicates 294 305

Figure 4.2: The experimental results of various b values for ArgoUML

project.

Figure 4.3: The experimental results of various b values for SVN

project.

Figure 4.4: Detection performance for the ArgoUML dataset

Figure 4.5: Detection performance for the SVN dataset

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8257

V. CONCLUSION

In this study, a CFC-based term weighting scheme is
proposed to automatically detect duplicate bug reports.
The experimental results show that using CFC scheme can
achieve significant improvements. For SVN and
ArgoUML projects, the recall rate can be further improved
about 10% with a list size of 20 predictions. The reason is
that in CFC, a centroid is built from two important class
distributions: inter-class term index and inner-class term
index. Moreover, CFC scheme also adopts a denormalized
cosine measure, instead of a normalized prototype vector.

REFERENCES

[1] John Anvik, Lyndon Hiew, and Gail C. Murphy, “Coping with an

Open Bug Repository”, in Proceedings of the 2005 OOPSLA

workshop on Eclipse technology eX-change (eclipse '05), 2005, pp.

35-39.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy, “Who Should Fix

this Bug?” in Proceedings of the 28th International Conference on

Software Engineering (ICSE '06). New York, NY, USA: ACM,

2006, pp. 361-370..

[3] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and

Sunghun Kim, “Duplicate Bug Reports Considered Harmful...

Really?” in Proceedings of the 24th IEEE International Conference

on Software Maintenance (ICSM 2008), 2008, pp. 337-345.

[4] Zhi-Hao Chen, “Duplicate Detection on Bug Reports using N-Gram

Features and Cluster Shrinkage,” Master Thesis, Yuan Ze

University, Jul. 2011.

[5] Yguarat a Cerqueira Cavalcanti, Eduardo Santana de Almeida,

Carlos Eduardo Albuquerque da Cunha, Daniel Lucr edio, and

Silvio Romero de Lemos Meira, “An Initial Study on the Bug

Report Duplication Problem”, in Proceedings of the 14th European

Conference on Software Maintenance and Reengineering, 2010, pp.

264-267.

[6] Lyndon Hiew, “Assisted Detection of Duplicate Bug Reports,

Master Thesis”, the University of British Columbia, May 2006.

[7] Bradley Kjell, W. Addison Woods, and Ophir Frieder,

“Discrimination of Authorship using Visualization, Information

Processing and Management”, vol. 30, no. 1,pp. 141-150, Jan. 1994.

[8] Per Runeson, Magnus Alexandersson, and Oskar Nyholm,

“Detection of Duplicate Defect Reports Using Natural Language

Processing”, in Proceedings of the 29th International Conference on

Software Engineering (ICSE 2007), 2007, pp. 499-510.

[9] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-

Cheng Khoo, “A Discriminative Model Approach for Accurate

Duplicate Bug Report Retrieval”, in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering

(ICSE 2010), vol. 1. ACM, 2010, pp. 45-54.

[10] Ashish Sureka and Pankaj Jalote, “Detecting Duplicate Bug Report

Using Character N-Gram-based Features”, in Proceedings of the

17th Asia Pacific Software Engineering Conference, 2010, pp. 366-374.

[11] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun,

“An Approach to Detecting Duplicate Bug Reports using Natural

Language and Execution Information”, in Proceedings of the 30th

International Conference on Software Engineering(ICSE '08). New

York, NY, USA: ACM, 2008, pp. 461-470.

[12] Guan, H., Zhou, J., Guo, M.: “A class-feature-centroid classifier for

text categorization”. In: WWW 2009: Proceedings of the 18th

international conference on World Wide Web, pp. 201-210. ACM,

New York (2009).

[13] S. Tan. “An improved centroid classifier for text categorization.

Expert Systems with Applications”, pp.35 (1-2):279285, 2008.

BIOGRAPHY

Nhan Minh Phuc - received the B.Sc in

Information Technology from the Ho Chi

Minh City University of Natural Sciences-

Vietnam National University, and M.Sc in

Computer Science and Engineering from

Yuan Ze University, Taiwan. He is now

working in Tra Vinh University, Viet Nam.

