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Abstract: According to recent work, detection on duplicate bug reports has received much attention. One of the reasons 

is that duplicate bug reports may consume time of bug triagers and software developers. In previous studies, many 

schemes have been developed for using text mining techniques or using the information retrieval and natural language 

processing techniques. In this paper, we propose a method to improve centroid characteristics by adjusting centroids 

with better initial values than based on Class-Feature-Centroid (CFC) [12]. With the effectiveness of CFC, the centroid-
based approach can obtain further improvements for detection performance. The method includes two steps. First, we 

extract inter-class and inner-class term indices from the corpus. Second, we enhance centroid calculation based on class 

features. Moreover, for similarity measure we also adapt the calculation of the traditional cosine similarity by 

denormalized cosine measure which is also used in [12]. 
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I. INTRODUCTION 

Defect reporting is one of important parts of software 

maintenance process. For many open source software 

projects such as Bugzilla, Firefox so on, they alway have 

an issue tracking system which is used to receive bug 

reports which allow users to describe, track, classify, 
comment and report dedects. Normally, the bug reports are 

analyzed by a triager and assigned them to the appropriate 

programmers who determine the order in which to work 

on assigned reports based upon such information as a 

report's priority for fixing bugs. With the bug tracking 

systems, users can report new bugs, track statuses and 

comments of bug reports on existing bug reports. This 

helps to reduce time and cost for bug report triaging. 

According to [8], on average processing a bug report 

needs around 30 minutes for the collected data of Sony 

Ericsson. However, this takes only 30 seconds using 
automatic detection techniques by natural language 

processing (NLP) [8]. Although bug tracking systems 

have signicant benefits, they have challenges in handling 

duplicate bug reports. Since the system of bug reports 

process is often uncoordinated, manual inspection is 

needed to detect whether these bug reports has been 

reported before. 

Duplication Detection Problem 

Duplicate bug report problem can be understood as 

following: two or more bug reports are said to be 

duplicate if they describe the same bug issue or software 
defect and thereby have the same solution. In the past, 

many researchers have noticed the severity of the 

duplicate bug report problem [1, 2, 6, 8, 10]. For example, 

in 2006, reported that duplicate reports made up 36% of 

all reports in the Firefox repository, 17% of Eclipse 

Platform reports, 14% of Apache 2.0 reports and 13% of 

Fedora Core reports [6]. These percentages correspond to 

large numbers of reports: 14159 for Firefox, 9181 for the 

Eclipse platform, 422 for Apache 2.0, and 4792 for Fedora 

Core [6]. Moreover, the previous Eclipse dataset collected 

 

 
from October 2001 to August 2005 has 18,165 bug 
reports, and 20% of the reports are duplication [1]. In 

addition, 30% of 2,013 reports in the Firefox dataset 

collected from May 2003 to August 2005 are duplicate. 

According to previous studies, the problem of duplication 

detection can be characterized by identifying two or more 

bug reports that describe the same software defect. 

Typically, the duplicates can be further classified into two 

types. Firstly, the duplicate bug reports describe the same 

failure situation. Secondly, the bug reports describe the 

different failures with the same source of the software 

defect. However, since the second duplication type is more 

complicated and may involve different vocabulary for 
different bug reports then its detection usually cannot be 

effective by only exploring the textual information of the 

bug reports. For solving these problems, the researchers 

found that specific information in program need to 
consider such as executable traces. However, these relates 

to private information, so among research focuses on first 

type. 

 
Figure 1.2: The duplication detection is performed to give  a 

recommendation list to predict the likelihood of an incoming bug report 

being a duplicate of RCi. 
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In open software repositories, bug reports contain pre-

defined fields, free-form text, attachments, and 

dependencies. The pre-defined fields provide a variety of 

categorical data about the bug reports. The report 

identification number, creation date, and reporter are fixed 

when the report is created. For some other values such as 

the product, component, operating system, version, 

priority, and severity after submitting to the system they 

are led by the reporter and sometimes these may also be 

changed over the lifetime of the report. In general, the 
reports usually consist of some error messages, meta-

information, a short summary and long description.  

The duplication detection problem in this research is 

processed as follows. For a software project, the historical 

bug reports are first classified into n report clusters (RCs). 

Each RC has a master bug report (MBR). If an RC has 

more than one bug report, the bug reports in the RC have 

the duplicate relationships. For each incoming bug report 

BRx, the duplication detection is performed to generate a 

recommendation list that shows the likelihood order of 

BRx being a member of RCi. The duplication relationship 
is determined if one of the following conditions is 

satisfied: 

1. For a master report BRm, a bug report BRi has been 

resolved as duplicate with a reference to BRm in the bug 

tracking system, and the report status is closed. 

2. For two bug reports BRi and BRj, if they are marked as 

the duplicate of BRm, BRi is a duplicate of BRj, and vice 

versa. 

     3. If there is another bug report BRk that is marked as 

duplicate of BRi, BRk is also a duplicate of BRm. This 

property is called the transitivity. 

Table 1.1: An example of master bug report (BR) and its 
duplicates 

# of 
Cluster 

Master BR and its duplicate 

1 793 689 

2 797 792, 703 

... ... ... 

n 2610 2520, 2407, 525 

 

Generally, when the triagers identify that a new report is a 

duplicate of an old one, then the new one is marked as 

duplicate. In this research, given a set of reports on the 

same defect, the earliest one in the set is marked as the 

master report as seen in Table 1.1. In this example, last 

column of each row presents as master bug report and other 
columns are its duplicates. In Figure 1.1, this bug report 

#174 is identified as a duplicate in the resolution field. On 

the bottom of the figure show that this bug report is a 

duplicate of bug report #108. In this case, these two bug 

reports are also formed a report cluster. For a software 

project, the historical bug reports are classified into n report 

clusters. To build the clusters, we use the comments of bug 

reports to create a mapping file as seen in Table 1.1, which 

describes a form of the map file which the each row 

presents as one cluster.  Figure 1.2 shows an example for 

ArgoUML in which a recommendation list is generated for 

BR # 174. The RCi containing the MBR # 108 is marked 

according to the detection judgement. 

The rest of the paper is organized into four sections. 

Section II gives a brief overview of related work. Section 

III presents the proposed scheme in which extended 

centroid features are used to improve the performance of 

duplicate detection. In section IV, the empirical study on 

different open source projects is elaborated to demonstrate 
the effectiveness of the proposed scheme. Finally, section 

V concludes the paper. 

II. RELATED WORD 

In this chapter, we present related works of the research 

problem and technique that related to our study. In [6], 

Hiew developed a centroid-based incremental cluster 

scheme and get successful for detection of duplicate bug 

reports around 20% - 50% in recommendation list of top 7 

with projects of Eclipse: 20% and Fedora: 31%. Moreover, 

the paper published in 2007, Runeson, Alexandersson, and 

Nyholm have proposed a software tool using natural 
language processsing (NLP) techniques for software 

projects of Sony Ericsson [8]. However, result of recall 

rate also achieved in range 31% - 42% with top between 5 

and 15 for recommendation list. 

 

Figure 1.1: An example of a duplicate bug report in ArgoUML. In this 

example BR # 174 is a duplicate of BR # 108 

Another method in recent research which is evaluated high 

by recall rate is better than others is extra textual 

information and the execution information of Wang et al 

[6]. With enhancing of software execution information, his 
approach can identify from 67% to 93% recall rate of 

duplicate bug reports for Firefox project. However, the 

improvements for execution information can be very 

complicated and require advanced instrumentation tools. 

In addition, another drawback is that this method relate to 

privacy concern of user behavior information from the 
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execution information. Sun et al. [9] in 2010 explored the 

Support Vector Machines (SVM) model with selecting 

more relevant textual features of bug reports and result for 

exploring 54 features help their model can get around from 

48% to 52% recall rate with top 5 for recommendation list. 

However, this method used the IDF (inverse document 

frequency) to improve the discriminative. This leads to 

large computation when the number of data set increase 

day by day. Moreover, the SVM model also need to retrain 

when a new bug report comes, this can cause a great cost 
in the detection process. 

Also in the same year 2010, feature extraction method 

based n-gram of Ashish Sureka and Pankaj Jalote [10] 

were proposed and have improved the performance of 

duplicate detection on bug reports. The method based 

observation of bug report characteristics which contain 

many code compound words. However, result recall rate 

in their technique only achieve at 40% top-10 of 

recommendation list for the Eclipse project. Main reason 

is that the n-gram-based approach may cause many noisy 

features. In Chen's thesis [4], he proposed the basic NLP, 
N-gram, and the cluster Shrinkage (CS) technique that 

improve the similarity identification using reweighting the 

features of bug reports. The method can get around 89% 

and 76% top 20 of recommendation list for SVN project 

and ArgoUML, respectively. However, this method used 

reweighting makes cost for high calculation. 

III.  DUPLICATION DETECTION DESIGN 

This section presents the design of proposed study method 

to improve duplicate bug reports. In our approach, we 

definite a cluster as a duplicate bug reports set and when 

have a new bug report is submitted, we call it is an 

incoming bug report. Moreover, we also call first bug 
reports are master bug reports as shown in Table 3.1. 

Table 3.1: An example for mapping in duplication bug report  

# of 
Cluster 

Incoming bug reports and 
confirmed duplication 

Master bug report 

1 793 689 

2 797, 792 703 

... ... ... 

n 2610, 2520, 2407 525 

 

We use the comments for determine bug reports which has 

been marked as a duplicate. If the bug report is a duplicate 

bug report, it is marked as a duplicate with a message is 

added in bug report like form “this issue has been marked 

as a duplicate of <bug report ID>”. This comment is often 

marked by developer. According to previous studies, 

although centroid-based approaches bring many 

advantages [6], however, they also face much serious with 

the problem of inductive bias or model misfit [10, 13]. 
Centroid-based approaches are more susceptible to model 

misfit because of its assumption that a document should be 

assigned to a particular class when the similarity of this 

document and the class is the largest [12]. Therefore, they 

explored that a centroid based classifier should give more 

weight to term distributions among the corpus, i.e., inter-

class, inner-class and in collection distributions. Centroids 

considering characteristics of term distribution have 

shown improved results [7]. From previous studies 

observation, we propose a model with novel weight 

representation for centroid based duplicate detection 

which incorporates both inter-class term distribution and 

inner-class term distribution to determine term weights in 

prototype vectors. 

In present method, we construct a model for improving the 
duplicate bug report detection rate. For experiment in 

preliminary result, we get the recall rate better than others. 

In particular, the proposed scheme has the following four 

basic processing steps and subsection elaborates on each 

of these steps. 

1. Feature extraction 

2. Feature weighting 

3. Similarity calculation 

4. Recommendation generation 

Figure 3.1 shows the processing flow in our scheme. 

 

 
Fig. 3.1: The detection process for duplicate bug reports. 

 

A. Feature extraction 

For presentation bug reports, we use the same model with 

previous studies which is VSM (Vector Space Model). 
Proposed method performs pre-processing for raw textual 

data before analysing it, tokenizing the text into words and 

removing stems from those words. Using the WVTool tool 

to obtain tokenized which based on letters and non-letters, 

all non-letter characters are assumed to be separators, thus 

the resulting tokens contain only letters. Tokenization 

strips punctuation, capitalization, numbers, and other non-

alphabetic constructs. Stemming function is useful to map 

different grammatical forms of a word to a common term 

and allows for a more precise comparison between bug 

reports by creating a more normalized corpus, in our 
experiments used the common Porter stemming algorithm. 

We then filter each sequence against a stop list of common 

words. Stop list remove words such as “a” and “and” that 

are present in text but contribute little to its comparative 

meaning. Moreover, to define exactly the dimensions of 

the vector space, we also use word list creation function 

with a list of string values in our method. 

B. Feature weighting 

From observation limitations for the inferior performance 

of centroid-based classifiers is that centroids do not have 
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good initial values [12]. In order to overcome this issue, 

we employ CFC (Class-Feature-Centroid) method, in this 

method a centroid is built from two important class 

distributions: inter-class term index and inner-class term 

index. CFC presents a novel combination of these both 

and instead of using traditional cosine measure for 

calculation between two vectors we use denormalized 

cosine measure because its advantages for calculating the 

similarity score between a text vector and a centroid [12]. 

Formula for calculation traditional centroid as follow: 
 

 

(1) 

In formula (1) the centroid is the arithmetical average of 

all document vectors of class Cj. In the CFC method, 

weight for term tk of class j is calculated as: 

 

(2) 

 

where DFj
ti is term ti' s document frequency in class Cj, |Cj| 

is the number of documents in class Cj , |C| is the total 

number of document classes, CFti is the number of classes 

containing term t, and b is a constant larger than one. In 

the above formula, the first phrase describes the inner-

class term index, and the second phrase describes the 

inter-class term index. 

Function of the inner-class distribution of a term can help 
to distinguish text classification. For instance, if a term 

appears many times in documents of category C, and then 

a test document containing the term is more likely to be of 

category C. The advantage of this is to limit the inner-class 

feature weight within range [1,b] and b is a parameter 

greater than 1. The denominator |Cj| in the formula can 

smooth the difference of document frequencies across 

categories. This component can be easily computed by 

counting the occurrence of terms while traversing the 

corpus, which only incurs linear-time cost. For the inter-

class term index, a good inter-class feature or term should 

distribute rather differently among classes. In other words, 
if a term only appears in a few categories, and then the 

term is a discriminative feature, thus a good feature for 

classification. Conversely, if a term appears in every 

category, and then the term is not a good inter-class 

feature. Extracting inter-class term index help to produce 

more discriminative features. It is a form is similar to IDF, 

but the difference is that the CFC is counting the number 

of categories or classes containing the term. When a term 

that occurs in all category, we get |C| = CFti) then the value 

becomes 0. In the case the term only occurs in one 

category, we get the value is log(|C|). In other situation, 
the value is got from between them. From observation, we 

show that such rare terms and bias against popular terms. 

We can also be calculated the inter-class term index easy 

in linear time by counting vocabularies while traversing 

the corpus once. 

C. Similarity ranking 

From previous researches, using cosine for similarity 

calculation is evaluated as one of effective methods 

between two vectors as shown in Figure 3.2. In our 

method, we also follow this method. However, we do not 
use the same traditional similarity measure between two 

vectors that replace by adopting this method with another 

method called denormalized cosine measure which is 

computed between a document vector and a prototype 

vector as shown in Figure 3.3. 

From previous study [12], the denormalized cosine 

measure presents the discriminative capability of 

prototype vectors and improves the accuracy of detection 

in duplication bug reports. In our model, there are two 

types of similarity calculations. One of them is called 

document-based ranking and another type is cluster-based 

ranking. In document-based ranking, we first perform 
comparison of incoming bug reports with all bug reports in 

bug repository, then we sort them by computing similarity 

values to determine whether bug reports is duplicate or 

not. Another type is the cluster-based ranking, for this type 

we re-calculate the cosine values before performing to 

determine duplicate bug reports. We then average these 

values of members in cluster. Finally, we compare the 

incoming bug reports with all bug reports for new cosine 

values in bug repository and sort them by calculation 

similarity value in determining duplicate bug reports. 

 
Figure 3.3: An illustration of denormalized cosine measure 

D. Top-N Recommendation 

Follow-up previous methods, we present the preliminary 

result by using the top N with recommendation system. 

We rank for top 20 and observe the result. With the result 

get from experiment we compare the top-N 

recommendation list with past researches. In our approach, 

with preliminary result we get the performance better than 

others. 

 
Figure 3.2: An illustration of standard cosine measure 
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IV. PRELIMINARY EXPERIMENTS 

 

In this section, we present our preliminary experimental 

environment with two projects of open-source datasets are 
ArgoUML and SVN. Table 4.1 lists the detailed 

information of these two datasets. We also make a 

comparison with past research work in performance. The 

result is described in the following subsections. 

A. Experimental Setup 

To evaluate the CFC scheme and related duplication 
detection schemes, the recall rate metrics in Equation (4.1) 
was used in the experiments. This represents that how 
many bug reports can be correctly detected in the top-k 
items of the recommendation rank list. The recall rate used 
in the experiments is defined as follows: 

Recall rate (4.1)            
reports bug  duplicate of #  Total

 predictioncorrect   of #
 ＝                 

In our model, we use parameter b to calculate weighting 

feature. In our experiment, we study CFC's performance 

with varying values of b. Then, we observe that parameter 

b get the best performance result when b gets value e - 1.9 

with (e -1 ≤ b ≤ e - 2.0) in our experiments. The results are 

shown in figures 4.2 to 4.3. 
B. Comparison Evaluation  

To explore the effectiveness of CFC in comparison with 

related detection schemes, experiments were conducted 

to study the work of Hiew and the work of Runeson. The 

results are shown in Figures 4.4 to 4.5. 

As shown in the experimental results, the proposed CFC 

scheme has significant improvements in most cases of 

all two projects. Figure 4.5 shows that the CFC scheme 

can improve the TF-IDF scheme in both Runeson-based 
and Hiew-based methods up to 10% in the SVN dataset. 

As the SVN dataset, the CFC-based scheme performed 

well in the ArgoUML dataset. Figure 4.4 shows that the 

CFC-based scheme can also improve the TF-IDF scheme 

in both Runeson-based and Hiew-based methods up to 5% 

in the ArgoUML dataset. 

 

Table 4.1: Information of data sets of two open source 
projects 

Description ArgoUML SVN 

Language Java C 

Software Type UML Tool SCM Tool 

SCM Subversion Subversion 

Repository Tigris Tigris 

Data period 01/02-07/05 01/03-07/05 

# of bug repts 4,613 2,296 

#of duplicates 294 305 

 
Figure 4.2: The experimental results of various b values for ArgoUML 

project. 

 
Figure 4.3: The experimental results of various b values for SVN 

project. 

 
 

Figure 4.4: Detection performance for the ArgoUML dataset 

 
Figure 4.5: Detection performance for the SVN dataset 
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V. CONCLUSION 

In this study, a CFC-based term weighting scheme is 
proposed to automatically detect duplicate bug reports. 
The experimental results show that using CFC scheme can 
achieve significant improvements. For SVN and 
ArgoUML projects, the recall rate can be further improved 
about 10% with a list size of 20 predictions. The reason is 
that in CFC, a centroid is built from two important class 
distributions: inter-class term index and inner-class term 
index. Moreover, CFC scheme also adopts a denormalized 
cosine measure, instead of a normalized prototype vector. 
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